Speed

Objectives:

Average Speed -	Total Distance
Average Speed =	Total Time

- 1. To understand that speed is a component of motion
- 2. To understand that speed is the rate of distance and time
- 3. To use units of the metric system correctly

Procedures:

1Write the title of your lab and draw the data-table on your CB
2Crete a race track that is 150 cm long and mark a "start" line with tape, and mark the
"end" at the end of the track.
3Tape the ramp on the "start" mark
4Record the "distance" (length of the ramp) on your data-table
5Lift the untapped side of the ramp to a 10 cm height (use to ruler to measure height)
6Drop the marble and measure the time from the "start" to the "end" (Do not start the
timer when the marble is at the top of the ramp. Make sure to start the timer when the
marble hits the "start" line, and stop it at the "end")
7Record the "time" on the data-table
8Repeat steps 4 to 7, but now lift the ramp to 15 cm height.
9Repeat steps 4 to 7, but now lift the ramp to 20 cm height.
10Use the formula to calculate the speed
11 Answer the questions below the data-table on your CR

Height	Distance	Time	Speed
10 cm			
15 cm			
20 cm			

Question 1: How does the height of the ramp affect the speed of the marble?

Question 2: What will happen to the speed if the marble was dropped from a 5 cm height?

Velocity

Objectives:

Average Speed =	Total Distance
	Total Time

- 1. To understand that velocity is a component of motion
- 2. To understand that velocity has speed and direction
- 3. To use units of the metric system correctly

1.	Use your CB in "landscape" form
2.	Write the title of your lab and draw the data-table on your CB
3.	Measure the length of the table from side to side and record it in your
	data table under "distance". Use the units "cm" for centimeters.
4.	Start the timer and push the car slowly at a constant speed across the
	entire length of the table. Record the "time" on your data table in seconds
	"s" under "slow car"
5.	Use the compass to record the "direction" in which the car traveled
6.	Use the formula to calculate the speed. Record the speed and
	direction of the car under "Velocity"
7.	Start the timer and push the car at a fast constant speed across the
	entire length of the table. Record the "time" on your data table in seconds
	"s" under " <u>fast car</u> "
8.	Answer the questions below the data-table on your CB

Motion	Distance	Time	Direction	Velocity
Slow				
Fast				

Question 1: How is speed different from velocity?

Question 2: What are the components of Velocity?

Motion Vocabulary

1. Motion- is a change in position of an object with respect to time. N	l otion
is typically described in terms of displacement, distance (scalar),	
velocity, acceleration, time and speed.	

2. **Speed-** is a <u>scalar quantity</u> that refers to "how fast an object is moving." Speed can be thought of as the rate at which an object covers distance

3. **Velocity-** is a <u>vector quantity</u> that refers to "the rate at which an object changes its position."

4. **Acceleration-** is a vector quantity that is defined as the rate at which an object changes its velocity. An object is accelerating if it is changing its velocity.